
Cache oblivious matrix multiplication using an

element ordering based on the Peano curve

Michael Bader and Christoph Zenger

Institut für Informatik der TU München, Boltzmannstr. 3, 85748 Garching,
Germany

Abstract

One of the keys to tap the full performance potential of current hardware is the
optimal utilisation of cache memory. Cache oblivious algorithms are designed to
inherently benefit from any underlying hierarchy of caches, but do not need to
know about the exact structure of the cache. In this paper, we present a cache
oblivious algorithm for matrix multiplication. The algorithm uses a block recursive
structure, and an element ordering that is based on Peano curves. In the resulting
code, index jumps can be totally avoided, which leads to an asymptotically optimal
spatial and temporal locality of the data access.

Key words: cache oblivious algorithms, matrix multiplication, space filling curves
PACS:

0 Introduction

The most important data structures used in linear algebra algorithms are
vectors and matrices or, more general, multidimensional arrays. The elements
of these arrays have to be mapped to a linear memory space, such that all
elements are stored in an address interval. Typically, algorithms are organized
as loops over the array indices. However, even if an index is incremented only
by 1, the respective address in memory may jump to a far away location. Jumps
in the address space should be avoided on modern computer architectures,
because the access of a distant element might cause a cache miss and thus
take much more time than the access of a neighbouring element. For matrices,
a row-wise or column-wise storage scheme is most often used. Then, even
simple algorithms like the multiplication of two square matrices will cause
frequent jumps in the address space. A lot of research is devoted to modify
standard algorithms to overcome these problems, and improve performance
on modern hardware.

Preprint submitted to Elsevier Science 30th December 2004

In contrast, many fundamental algorithms in computer science are based on
data structures which do not allow jumps in the address space. The most
famous and extensively studied example is the Turing machine where the
read/write head can only move by one position in every step. Another example
is the push down automaton. Its basic data structure, the stack (in the original
German notation “Keller”) was introduced in a famous paper by Bauer and
Samelson [1]. Only two operations are allowed on a stack: push to store data
on top of the stack, and pop to retrieve the topmost data. If either the band of
a Turing machine or the stack of a push down automaton is directly mapped
to the memory of a computer, it is very clear that the memory access will
always remain local without any jumps.

This raises the question if algorithms in linear algebra can also be based on
data structures that avoid jumps in the address space. In this paper we in-
vestigate the probably most basic nontrivial algorithm of linear algebra, the
multiplication of two square matrices. We want to emphasize that it is not the
aim of this paper to produce the fastest algorithm for matrix multiplication
on a specific computer architecture. In contrast we want to demonstrate that
it is possible to construct an algorithm where memory addresses change only
with stepsize one, which also eliminates the need for address arithmetic. We
will therefore concentrate on the basic idea of the algorithm, and present some
of the nice properties that result from this approach.

1 Matrix Multiplication

The multiplication of two matrices, AB = C, is not only one of the most
important (sub-)tasks in linear algebra, but it is probably also one of the
most frequently used algorithms in introductory lessons to programming. We
can safely assume that most students in mathematics, computer science, or
engineering, at one time or another, had to program it as an exercise. We can
also assume that 99% of the resulting algorithms are similar to algorithm 1.

Algorithm 1 multiplication of two n-by-n matrices
for i from 1 to n do

for j from 1 to n do

C[i,j] := 0;

for k from 1 to n to

C[i,j] := C[i,j] + A[i,k] * B[k,j];

end do;

end do;

end do;

Depending on the programming language that is used, the elements of the ma-

2

trices A, B, and C, will be stored in row-major or column-major order, or even
using a pointer-based scheme like in C/C++ or Java. As we already pointed
out, the resulting programs will show a rather disappointing performance on
most current computers due to the bad use of cache memory.

To improve cache performance, the temporal and spatial locality of the access
to the linearized matrix elements has to be improved. Most linear algebra
libraries, like implementations of BLAS [9], therefore use techniques like loop
blocking, and loop unrolling [6,10]. A lot of fine tuning is required to reach
optimal cache efficiency on a given hardware, and very often the tuning has to
be repeated from scratch for a new machine. Recently, techniques have become
popular that are based on a recursive block matrix multiplication [8]. They
automatically achieve the desired blocking of the main loop, and the tedious
fine tuning is restricted to the basic block matrix operations. Such algorithms
are called cache oblivious [3], emphasizing that they are inherently able to
exploit a present cache hierarchy, but do not need to know about the exact
structure of the cache.

Several approaches have been presented that use an element ordering based
on space filling curves [2,4]. More precisely, Morton ordering was used, which
further improves the data locality of the applied block recursive algorithm. In
other applications, like parallelization, or indexing in data bases, the excellent
locality properties of space filling curves are well known. Zumbusch, for ex-
ample, has shown that space filling curves are quasi-optimal for parallelizing
codes for the numerical solution of partial differential equations [11]. However,
as we will see in section 2, Morton ordering can only optimize the temporal
locality during matrix multiplication, but not the spatial locality. In addition,
neither of these approaches can completely avoid jumps in the address space.

In this paper, we will present an approach that uses an ordering of the matrix
elements that is based on a Peano space filling curve. The Peano curve (see
figure 1 also results from a recursive construction idea, so our approach will
be similar to many block recursive multiplication schemes. However, our pre-
sented scheme totally avoids jumps in the access to all three matrices involved,
and shows optimal spatial locality in that sense. After each individual multi-
plication operation, the next elements to be accessed will be direct neighbours
of the previous ones.

In section 2, we will demonstrate the general idea of a Peano-based multipli-
cation algorithm for 3-by-3 matrices. This will be extended to a block recur-
sive matrix multiplication in sections 3 and 4, using a Peano-based indexing
scheme. After some implementational issues, we will show in section 6 that the
spatial and temporal locality of the element access pattern in this algorithm
is asymptotically optimal for any block-recursive code.

3

Figure 1. Recursive construction of the Peano curve: The so-called iterations of the
Peano curve are generated in a self-similar, recursive process. The Peano curve can
be imagined as the limit curve of this process.

2 Multiplication of 3-by-3 matrices

First, we take the time to re-formulate algorithm 1 into the following form:

Algorithm 2 multiplication of two n-by-n matrices (revisited)

// matrix C is assumed to be initialized

for all triples (i,j,k) in {1..n}x{1..n}x{1..n} do

C[i,j] := C[i,j] + A[i,k] * B[k,j];

end do;

In this second algorithm, we have removed any indications on the execution
order of the main loop. It may be executed in any order we find suitable,
because of the commutativity. So, starting from algorithm 2, we can try to
find optimal serializations of the loop, which show better locality of the element
access, and can benefit from the presence of cache memory.

Let us consider the multiplication of two 3-by-3 matrices. The elements of
both matrices, as well as the elements of the resulting matrix, shall be stored
in a Peano-like ordering:

a0 a5 a6

a1 a4 a7

a2 a3 a8


︸ ︷︷ ︸

=: A


b0 b5 b6

b1 b4 b7

b2 b3 b8


︸ ︷︷ ︸
=: B

=


c0 c5 c6

c1 c4 c7

c2 c3 c8


︸ ︷︷ ︸
=: C

(1)

The elements ck of the matrix C are computed as a sum of three products,

ck =
∑

(i,j)∈Ck

aibj, (2)

4

0 11

0 22

1 23

1 14

1 05

0 00

8 88

8 77

8 667 65

7 74

7 83

6 82

6 71

6 605 50

5 41

5 32

4 33

4 44

4 553 56

3 47

3 38

2 28

2 17

2 06

Figure 2. Graph representation of the operations of a 3-by-3 matrix multiplication.

where each set Ck contains the three required index pairs. The sets Ck are
easily obtained from the matrix multiplication algorithm. For example, we get

C0 = {(a0, b0), (a5, b1), (a6, b2)} , (3)

or

C4 = {(a1, b5), (a4, b4), (a7, b3)} . (4)

Following algorithm 2 to compute the matrix-matrix product, we have to
perform the following two steps:

(1) initialize all ck := 0 for k = 0, . . . , 8.
(2) for all triples (k, i, j) where (i, j) ∈ Ck, and k = 0, . . . , 8 execute:

ck ← ck + aibj

In step 2, the individual operations can be executed in arbitrary order. Our
goal will be to find an optimally “localized” execution order of the operations,
which means we try to avoid jumps in the indices k, i, and j.

To find suitable serializations, we can use a graph representation. The nodes
of the graph are given by the triples (k, i, j) of the matrix multiplication. Two
nodes of the graph will be connected by an edge, if there is no large index
jump in neither of the three indices. A suitable serialization is then given by
a path through the graph that visits each node exactly once.

In the graph given in figure 2, two nodes are connected, if the difference
between two indices is not larger than one in any of the components. The graph
directly provides us with an optimal serialization of the matrix multiplication.
We can see that after each element operation, we either directly re-use a
matrix element, or we move to its direct neighbour. There are, in fact, two
such serializations, as we can traverse the graph forward or backward, starting
from the triples (0, 0, 0) or (8, 8, 8), respectively. As there are no jumps at all
in the access of the matrix elements, we get, both, an optimal spatial locality,

5

2 01

1 10 1 32

3 333 11

0 22

2 23

0 00

Figure 3. Graph representation of the operations of a 2-by-2 matrix multiplication
using Morton ordering of the elements.

2 01

1 10 1 32

3 333 11

0 22

2 23

0 00

Figure 4. Graph representation of a 2-by-2 matrix multiplication using Morton
ordering. Nodes are connected, if at least one element may be reused. Only the
solid edges ensure spatial locality, as well.

and a very good temporal locality in the access pattern of the matrix elements.
Thus, the two key requirements for good cache performance are satisfied.

It is worth to point out that a similar scheme cannot be found for a recursion
based on 2-by-2 matrices. A 2-by-2 scheme similar to that in equation 1, but
using Morton numbering, would look like a0 a1

a2 a3


 b0 b1

b2 b3

 =

 c0 c1

c2 c3

 . (5)

The respective operation graph is given in figure 3. We can see immediately
that there is no path through that graph that visits all nodes exactly once.
Moreover, the dashed edges do not allow a reuse of any element. In the graph
given in figure 4, we allow edges between nodes where at least one matrix block
can be reused. This much weaker requirement leads to quasi-optimal temporal
locality of the element access, but cannot ensure spatial locality like the 3-by-3
scheme. A serialization that ensures both, temporal and spatial locality, can
not be found for the 2-by-2 case. This also holds, if other orderings are allowed
(Hilbert, for example).

3 Peano indexing of larger matrices

The multiplication scheme presented in section 2 can be easily extended to the
multiplication of 5×5 or 7×7 matrices. In fact, it can be used for any matrix
multiplication, as long as the matrix dimensions are odd numbers. However,
to improve the temporal locality of the data access, it is necessary to use a
block recursive approach. Hence, our approach will be based on a blockwise

6

P

P

P

P

Q Q

R

S

R

P Q
Q

P

Q

Q

P

QS

R

S

R
R

R

R

R

S S

P

Q

P

S
S

R

S

S

R

S

Q

P

Q

Figure 5. Recursive block numbering scheme based on the Peano curve

matrix multiplication, where the matrices are recursively divided into 3-by-3
matrix blocks. Therefore, the indexing scheme for larger matrices has to fulfill
the following basic requirements:

• The range of indices within a matrix block should be contiguous. Once
an enumeration of the matrix elements enters a matrix block, it has to
enumerate all elements before moving to the next block.
• The indexing scheme should be somehow recursive or self-similar. such that

we can re-use our multiplication scheme from section 2

These requirements are perfectly met by a suitable Peano curve. Each 3-by-3
matrix, as well as each 3-by-3 block matrix, will be numbered according to
one the four schemes given in figure 5. For block matrices, the nine subblocks
are, again, numbered by one of the four schemes. Figure 5 also illustrates
what numbering schemes are chosen for the nine subblocks, respectively. We
get a recursive numbering scheme that leads to a contiguous numbering of all
matrix elements. The numbering exactly follows a so-called iteration of the
Peano curve.

In the following, we will only discuss the case where the matrix size is a power
of 3. However, for both the block recursion and the size of the smallest blocks,
5 × 5 or 7 × 7 schemes may be used, as well. In fact, any nx × ny scheme is
applicable, where nx and ny are odd numbers. Therefore, the presented scheme
can be modified to work with any matrices of odd dimension.

4 Recursive Peano multiplication

The Peano numbering of larger matrices is based on subdividing the matrix
recursively into 3-by-3 blocks. Consequently, we will use a blockwise matrix
multiplication to implement the multiplication of larger matrices. Equation
6 is an example for such a blockwise multiplication. The matrix blocks are
named according to their numbering scheme, and indexed with the name of

7

the global matrix, and their Peano index within the matrix blocks.
PA0 RA5 PA6

QA1 SA4 QA7

PA2 RA3 PA8


︸ ︷︷ ︸

=: A


PB0 RB5 PB6

QB1 SB4 QB7

PB2 RB3 PB8


︸ ︷︷ ︸

=: B

=


PC0 RC5 PC6

QC1 SC4 QC7

PC2 RC3 PC8


︸ ︷︷ ︸

=: C

(6)

We get the following operations on the matrix blocks:

PC0 := PA0PB0 + RA5QB1 + PA6PB2

QC1 := QA1PB0 + SA4QB1 + QA7PB2

RC5 := PA0RB5 + RA5SB4 + PA6RB3

SC4 := QA1RB5 + SA4SB4 + QA7RB3

(7)

plus five similar equations for PC2, RC3, PC6, QC7, and PC8. The sums will be
computed by an algorithmic scheme like

PC0 := 0

PC0
+← PA0PB0 (short notation for PC0 := PC0 + PA0PB0

PC0
+← RA5QB1

PC0
+← PA6PB2

(8)

If we just consider the ordering of the matrix blocks, we can see that there
are exactly eight different types of block multiplications:

P
+← PP P

+← RQ

Q
+← QP Q

+← SQ

R
+← PR R

+← RS

S
+← QR S

+← SS.

(9)

Similar to this P
+← PP operation, we now have to examination the other

seven types of block multiplications. A close examination reveals that no ad-
ditional operation type will arise. Thus, we have a closed system of eight
multiplication schemes.

8

8 11

22 8

7 23

7 14

7 05

0 88

0 77

0 661 65

1 74

1 83

2 82

2 603 50

3 41

3 32

4 33

4 44

4 555 56

5 47

6 28

6 17

6 06

8 00

38 5

2 71

Figure 6. Graph representation of the operations of a 3-by-3 matrix multiplication
of type Q

+← QP .

The ordering of the matrix blocks in the P
+← PP block multiplication corre-

sponds to that for 3-by-3 matrices. Hence, we may carry over the serialization
introduced in section 2. However, we still have to find serializations for the
seven other types of multiplications. We will demonstrate this for the block

operation Q
+← QP . The respective 3-by-3 matrix multiplication is

a6 a5 a0

a7 a4 a1

a8 a3 a2




b0 b5 b6

b1 b4 b7

b2 b3 b8

 =


c6 c5 c0

c7 c4 c1

c8 c3 c2

 (10)

Figure 6 shows the respective serialization graph. Again, we can instantly see
the two possible serializations—one forward, one backward. The scheme is also
very similar to that issued by figure 2. We recognize that we just have to invert
the access order for the second index (which corresponds to the elements bi).

Now, it is interesting to note that a Q
+← QP scheme will often follow a

P
+← PP scheme. While the P

+← PP multiplication ends by processing the

(8, 8, 8) triple, the following Q
+← QP multiplication starts with the (0, 8, 0)

triple. We realize that

(1) The central P -block is directly re-used. Hence, the element b8 will be the

last accessed element of the P
+← PP , and directly used again as the first

element of the Q
+← QP scheme.

(2) In the global order, element 0 of the two Q-blocks will follow directly
after the respective elements 8 of the two P -blocks.

Consequently, there is no index jump in neither of the three indices, if a

Q
+← QP scheme starting at (0, 8, 0) follows after a P

+← PP scheme ending
at (8, 8, 8).

We now need to repeat the analysis carried out on the schemes P
+← PP and

Q
+← QP for the remaining six schemes, and their combinations. We get the

9

block scheme serialization

C
+← AB C A B

P
+← PP + + +

P
+← RQ − + +

Q
+← QP + + −

Q
+← SQ − + −

R
+← PR + − +

R
+← RS − − +

S
+← QR + − −

S
+← SS − − −

Table 1
Serializations for the eight different block multiplication schemes. A + indicates
that the access pattern for the respective matrix A, B, or C is executed in for-
ward direction (from element 0 to 8). A “minus” (−) indicates backward direction
(starting with element 8).

following results:

(1) Every scheme leads to graph representation similar to those in figures 2
and 6. Thus, there are two optimal serializations for each scheme.

(2) All of the serializations have the same structure as that for P
+← PP .

Just like in the serialization for Q
+← QP , we have to invert the access

pattern for one, two, or even all of the three indices.
(3) For each scheme, only one of the two possible serializations will be used.

In addition, this will ensure that even at the connection of two schemes,
there will never be an index jump.

Table 1 shows the eight different schemes, and the access pattern of the ele-
ments for all three indices.

5 Implementation

Algorithm 3 is an implementation of the recursive scheme we have developed
in the previous sections. The algorithm takes three parameters—phsA, phsB,
and phsC—to indicate the serialization scheme (see table 1). An additional
fourth parameter, dim, specifies the size of the current matrix block.

The actual matrices—A, B, and C—, as well as the matrix indices—a, b, and
c—, are defined as global variables. In a programming language like C or

10

C++, the index variables a, b, and c are dispensable. Instead, three pointers
A, B, and C may be used that directly reference the matrix elements. The index
shifts can then be executed directly on the pointers. This will also improve
the performance of the algorithm considerably.

In the given algorithm, the recursion actually goes down to 1-by1 matrices.
This is rather inefficient. The recursion should be stopped at least on the
previous level (dim==3), such that the multiplication is performed on 3-by3
matrices. However, the respective algorithm would not have fit onto a single
page.

The parameters phsA, phsB, and phsC can only assume the values +1 or -1.
It is therefore possible to replace the recursive function peanomult by a set of
eight recursive function, one for each possible combination of values for phsA,
phsB, and phsC. The index variables a, b, and c can then be updated by using
increase or decrease operations only. This makes it much easier for compilers
to optimize the generated code, and therefore leads to a massive performance
gain.

6 Characterizing Data Locality and Cache Efficiency

6.1 Data Locality

To characterize the data locality of the algorithm, we will analyse the ratio
between the number of algebraic operations performed and the index range
that is covered by the elements accessed by these operations. For example,
during the block multiplication of two 3-by-3 matrix blocks, the algorithm will
perform 27 operations (counting a multiplication and the following addition
as one operation). During these 27 operations, only a subset of 9 elements will
be accessed in each of the three matrices involved. If we disregard approaches
like Strassen’s algorithm, then in fact any matrix multiplication will have to
access at least n2 elements for performing n3 operations—otherwise, it would
perform superfluous operations. Hence, after p operations, we will cover an
index range of at least p2/3 elements. This is also the optimal ratio we can
achieve in the long range.

However, a naive implementation like given in algorithm 1 will access a range
of n different elements during the first n operations. Even a block recursive
approach will only make sure that k2 different elements will be accessed during
k3 operations (presuming that k is a multiple of the block size). However, these
elements will not necessarily belong to a contiguous range of indices. So, while
the ratio k2/k3 = k2/3 is obviously the best we can get, we can characterize

11

Algorithm 3 Recursive implementation of the Peano matrix multiplication
/* global variables:
* A, B, C: the matrices, C will hold the result of AB
* a, b, c: indices of the matrix element of A, B, and C
*/
peanomult(int phsA, int phsB, int phsC, int dim)
{

if (dim == 1) {
C[c] += A[a] * B[b];

}
else
{

peanomult(phsA, phsB, phsC, dim/3); a += phsA; c += phsC;
peanomult(phsA, -phsB, phsC, dim/3); a += phsA; c += phsC;
peanomult(phsA, phsB, phsC, dim/3); a += phsA; b += phsB;

peanomult(phsA, phsB, -phsC, dim/3); a += phsA; c -= phsC;
peanomult(phsA, -phsB, -phsC, dim/3); a += phsA; c -= phsC;
peanomult(phsA, phsB, -phsC, dim/3); a += phsA; b += phsB;

peanomult(phsA, phsB, phsC, dim/3); a += phsA; c += phsC;
peanomult(phsA, -phsB, phsC, dim/3); a += phsA; c += phsC;
peanomult(phsA, phsB, phsC, dim/3); b += phsB; c += phsC;

peanomult(phsA, phsB, phsC, dim/3); a -= phsA; c += phsC;
peanomult(phsA, -phsB, phsC, dim/3); a -= phsA; c += phsC;
peanomult(phsA, phsB, phsC, dim/3); a -= phsA; b += phsB;

peanomult(phsA, phsB, -phsC, dim/3); a -= phsA; c -= phsC;
peanomult(phsA, -phsB, -phsC, dim/3); a -= phsA; c -= phsC;
peanomult(phsA, phsB, -phsC, dim/3); a -= phsA; b += phsB;

peanomult(phsA, phsB, phsC, dim/3); a -= phsA; c += phsC;
peanomult(phsA, -phsB, phsC, dim/3); a -= phsA; c += phsC;
peanomult(phsA, phsB, phsC, dim/3); b += phsB; c += phsC;

peanomult(phsA, phsB, phsC, dim/3); a += phsA; c += phsC;
peanomult(phsA, -phsB, phsC, dim/3); a += phsA; c += phsC;
peanomult(phsA, phsB, phsC, dim/3); a += phsA; b += phsB;

peanomult(phsA, phsB, -phsC, dim/3); a += phsA; c -= phsC;
peanomult(phsA, -phsB, -phsC, dim/3); a += phsA; c -= phsC;
peanomult(phsA, phsB, -phsC, dim/3); a += phsA; b += phsB;

peanomult(phsA, phsB, phsC, dim/3); a += phsA; c += phsC;
peanomult(phsA, -phsB, phsC, dim/3); a += phsA; c += phsC;
peanomult(phsA, phsB, phsC, dim/3);

};
}

12

the data locality of an algorithm by the respective worst case.

For a given algorithm, we will define the access locality function LM(n) as
the maximal possible distance between two elements of a matrix M that are
accessed within n contiguous operations.

In the Peano multiplication in algorithm 3, the access patterns of the matrices
ensure that index ranges are always contiguous. Thus, after p operations, we
will automatically get L(n) ∈ O(p2/3) as an upper bound of the extent of the
index range. Moreover, we can even determine the respective factor. First, we
determine the longest streak of not reusing matrix blocks in algorithm 3. On
matrix A, no matrix block is reused for up to nine consecutive block multipli-
cation. For matrix C a matrix block is reused after at most three contiguous
block operations, and for matrix B, it is one block multiplication at most.
During recursion, two such streaks can happen right after each other. Thus,
the longest streak of not reusing a matrix block is 18 operations for matrix
A, 6 operations for matrix C, and 2 operations for matrix B. Consequently,
after 18n3 block operations on matrix A, we will access approximately 18n2

contiguous elements of A. Thus, for matrix A, we get that

LA(n) ≈ 18

182/3
n2/3 =

3
√

18n2/3, (11)

For matrices B and C, we receive in a similar manner that

LB(n) ≈ 3
√

2n2/3 LC(n) ≈ 3
√

6n2/3. (12)

With LA(n) ≤ 3n2/3, and both, LB(n) ≤ 2n2/3, and LC(n) ≤ 2n2/3, the data
locality functions are all very close to the theoretical optimum, n2/3.

6.2 Cache Misses on an Ideal Cache

To characterize the temporal locality of the algorithm, we give an estimate of
the number of the generated cache misses on a so-called ideal cache [5]. The
ideal cache model assumes a computer consisting of a local cache of limited
size, and unlimited external memory. The cache consists of M words that are
organized as cache lines of L words each. The replacement strategy is assumed
to be ideal in the sense that the cache can foresee the future. Hence, if a cache
line has to be removed from the cache, it will always be the one that is used
farthest away in the future.

In the following, we will compute the number of cache line transfers required
to compute a matrix multiplication of two N ×N matrices, N being a power

13

of three. The recursive algorithm leads to a recursion for the number T (N) of
transfers:

T (N) = 27T
(

N

3

)
= 33T

(
N

3

)
. (13)

Now, let n be the largest power of 3, such that three n × n matrices fit into
the cache. Hence, 3n2 < M , but 3 · (3n)2 > M , or

1

3

√
M

3
< n <

√
M

3
. (14)

Let k be the number of levels of recursion, then

T (N) = 33T
(

N

3

)
= . . . = 33kT

(
N

3k

)
=
(

N

n

)3

T (n) . (15)

As long as the n×n blocks are processed, each line of memory that is accessed
will be transfered to the cache at most once. Due to the ideal cache replacement
strategy, it will not be deleted till we move on to the next set of n×n blocks.
Hence, there will be

⌈
n2

L

⌉
cache transfers per n× n block.

As a direct result of the structure of our algorithm, one n×n block will remain
in the cache as it will be reused in the next block multiplication. Hence, only
two blocks will have to be transfered. A regular block recursive algorithm
would often have to exchange all three blocks in the cache. For the number of
cache line transfers T (n), we get

T (n) = 2 ·
⌈
n2

L

⌉
, (16)

and therefore

T (N) =
(

N

n

)3

· 2 ·
⌈
n2

L

⌉
≤

 N
1
3

√
M
3

3

· 2 ·
(

n2

L
+ 1

)

∈O
(

N3

L
√

M

)
.

A more careful examination leads to the following approximation:

T (N) ≈ 6
√

3
N3

L
√

M
(17)

14

7 Conclusions

We have presented a block recursive algorithm for matrix multiplication that
has excellent spatial and temporal locality features. Using the ideal cache
model, we were able to show that the number of cache misses is of order
O
(

N3

L
√

M

)
. This is asymptotically optimal for any algorithm that is based on

recursive block multiplication (algorithms that use a Strassen-like approach
excluded). Moreover, the index range covered by any p consecutive operations
consists of at most c · p2/3 elements, where c < 3 is a small constant for each
of the three matrices. This is very close to the theoretical minimum of 1 · p2/3.

The spatial locality is also optimal in the sense that index jumps will be totally
avoided; changes in the memory addresses of matrix elements are incremen-
tations or decrementations of at most one, which totally eliminates the need
for address arithmetics. While this fact cannot be fully exploited on standard
computers, it may be a considerable advantage for hardware implementations
of matrix multiplication.

As we already pointed out, the algorithm can be generalized to the multipli-
cation of non-square matrices of arbitrary size. If the numbers of rows and
columns of the matrices are odd numbers (adding single rows or columns of
zeroes where necessary), the 3-by-3 block recursion can, for example, be re-
peated up to matrix blocks of size p× q, where p, q ∈ {3, 5, 7}. Of course, the
peano numbering of the matrices has to be changed accordingly. It should also
be possible to generalize the multiplication scheme to certain types of sparse
matrices. Related to this is a recent work on the implementation of iterative
schemes for the finite element method, where the sparse matrices result from
a 9-point discretization stencil. It was shown that even with adaptivity and
multi-level schemes used, it is possible to use only stacks as data structures,
and therefore retain optimal spatial locality of the memory access [7].

References

[1] K. Samelson, F. L. Bauer. Sequentielle Formelbersetzung, Elektronische
Rechenanlagen 1(4), 1959

[2] Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra,
Mithuna Thottethodi. Nonlinear Array Layouts for Hierarchical Memory
Systems, in International Conference on Supercomputing (ICS’99), 1999

[3] Erik D. Demaine, Cache-Oblivious Algorithms and Data Structures, in Lecture
Notes in Computer Science, BRICS, University of Aarhus, Denmark, June 27-
July 1, 2002, Springer, to appear.

15

[4] Jeremy Frens, David S. Wise. Auto-Blocking Matrix-Multiplication or Tracking
BLAS3 Performance from Source Code. In Proceedings of the 6th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
1997.

[5] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th Annual Symposium on
Foundations of Computer Science, pages 285–297, New York, October 1999.

[6] Kazushige Goto, Robert van de Geijn. On Reducing TLB Misses in Matrix
Multiplication. TOMS, under revision
(preprint on http://www.cs.utexas.edu/users/flame/pubs.html)

[7] F. Günther, M. Mehl, M. Pögl, C. Zenger. A cache-aware algorithm for PDEs
on hierarchical data structures based on space-filling curves. SIAM Journal of
Scientific Computing, submitted

[8] F. G. Gustavson. Recursion leads to automatic variable blocking for dense
linear-algebra algorithms. IBM Journal of Research and Development 41 (6),
1999

[9] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Algebra
Subprograms for FORTRAN usage, ACM Trans. Math. Soft., 5, 1979, pp. 308–
323.

[10] R. Clint Whaley, Antoine Petitet, Jack J. Dongarra. Automated Empirical
Optimization of Software and the ATLAS Project. Parallel Computing 27(1–2),
2001, pp. 3–35

[11] Gerhard Zumbusch. Adaptive Parallel Multilevel Methods for Partial
Differential Equations. Habilitation, Universitt Bonn, 2001.

16

